metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{µ-2-[(pyridin-2-yl)iminomethyl]phenolato}bis[(2-formylphenolato)copper(II)]

Hui-Chang Chang, Jacqueline M. Cole,*‡Tze-Chia Lin, Sven O. Sylvester and Paul G. Waddell‡

Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, England

Correspondence e-mail: jmc61@cam.ac.uk

Received 23 February 2011; accepted 26 April 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.007 Å; R factor = 0.057; wR factor = 0.106; data-to-parameter ratio = 15.0.

The asymmetric unit of the title compound, $[Cu_2(C_{12}H_9-N_2O)_2(C_7H_5O_2)_2]$, contains two independent (2-formylphenolato){2-[(pyridin-2-yl)iminomethyl]phenolato}copper(II) molecules that form pseudocentrosymmetric dimers *via* interactions between the Cu and pyridyl N atoms of independent monomers. The square-planar geometry of the Cu atoms in the monomer thus becomes square-based pyramidal in the dimer. The crystal studied was an inversion twin, with unequal populations of 0.353 (17) and 0.647 (17).

Related literature

For related structures containing the salicylaldehyde ligand, see: McKinnon *et al.* (1964); Hall *et al.* (1965). For a related structure containing the (2-pyridylsalicylaldimine) ligand, see: Drummond & Wood (1972).

[‡] Other affiliation: Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.

Experimental

Crystal data

 $\begin{bmatrix} Cu_2(C_{12}H_9N_2O)_2(C_7H_5O_2)_2 \end{bmatrix} \\ M_r = 763.72 \\ Orthorhombic, P2_12_12_1 \\ a = 8.9811 (18) \text{ Å} \\ b = 18.856 (4) \text{ Å} \\ c = 19.612 (4) \text{ Å}$

Data collection

Rigaku Saturn724+ diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.736, T_{max} = 1$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.106$ S = 1.20 6782 reflections 452 parametersH-atom parameters constrained $V = 3321.2 (12) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 1.34 mm^{-1} T = 150 K 0.20 \times 0.12 \times 0.06 mm

33976 measured reflections 6782 independent reflections 6545 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.076$

 $\begin{array}{l} \Delta \rho_{max} = 0.39 \mbox{ e } {\rm \AA}^{-3} \\ \Delta \rho_{min} = -0.41 \mbox{ e } {\rm \AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 2964 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } 0.353 \mbox{ (17)} \end{array}$

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

JMC thanks the Royal Society for a University Research Fellowship, the Taiwanese Ministry of Education for a partially funded PhD studentship (for TCL), the University of New Brunswick for the UNB Vice-Chancellor's Research Chair (JMC), and NSERC Discovery Grant 355708 (for PGW).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2308).

References

Drummond, J. & Wood, J. S. (1972). J. Chem. Soc. Dalton Trans. p. 365.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Hall, D., McKinnon, A. J. & Waters, T. N. (1965). J. Chem. Soc. p. 425.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
McKinnon, A. J., Waters, T. N. & Hall, D. (1964). J. Chem. Soc. p. 3290.
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Acta Cryst. (2011). E67, m690 [doi:10.1107/S1600536811015674]

Bis{#-2-[(pyridin-2-yl)iminomethyl]phenolato}bis[(2-formylphenolato)copper(II)]

H.-C. Chang, J. M. Cole, T.-C. Lin, S. O. Sylvester and P. G. Waddell

Comment

The title compound forms dimers in which the monomer units are related by a non-crystallographic inversion operation. Intermolecular contacts are present between the copper(II) atoms and pyridyl nitrogen atoms (2.482 (4)Å and 2.469 (4) Å) with angles between the Cu—N contact and the plane of the pyridyl group observed to be $157.1 (5)^{\circ}$ and $150.4 (5)^{\circ}$. These contacts appear to be the predominant cause of dimer formation since there is no evidence for any other significant intermolecular interactions. The bonding between the salicylaldehyde ligand and the copper atom can be compared to the two known polymorphs of homoleptic bissalicylaldehydatocopper(II), one described with the symmetry of $P2_1/n$ (McKinnon et al., 1964), and the other as $P_{2/c}$ (Hall et al., 1965). The Cu—O bonds Cu1—O2 and Cu2—O5 in the title compound are observed to be 1.917 (3)Å and 1.918 (3)Å respectively, which is longer than the values of the equivalent bonds in the two polymorphs of bissalicylaldehydatocopper(II) where Cu-O1 is 1.86Å in the P2₁/n polymorph and 1.90Å in the P2₁/c polymorph. The Cu—O bonds Cu1—O3 and Cu2—O6 in the title compound are observed to be 2.022 (3)Å and 2.019 (3)Å respectively, also longer than the values of the equivalent bonds in the two polymorphs of bissalicylaldehydatocopper(II) where Cu—O2 is 1.98Å in the P2₁/n polymorph and 1.94Å in the P2₁/c polymorph. Additionally, the ligand bite-angles O2—Cu1—O3 and O5—Cu2—O6 are observed to be 91.05 (14)° and 90.89 (14)° respectively, lower than the equivalent angle O1—Cu—O2 in both of the known polymorphs of bissalicylaldehydatocopper(II), which are observed to be 94.8° in the P2₁/n polymorph and 95° in the P2₁/c polymorph. Bond distances from the copper atom to the 2-pyridylsalicylaldimine ligand are observed to be smaller than observed in a (2-pyridylsalicylaldimine)copper(I) tetramer (Drummond et al., 1972). In the title compound the bond lengths Cu1-O1 and Cu2-O4 are observed to be 1.916 (4)Å and 1.914 (3)Å respectively, shorter than the equivalent bond length Cu1—O1 in the (2-pyridylsalicylaldimine) copper(I) tetramer which is observed to be 1.965 (6) Å. The Cu1-N1 and Cu2-N3 bond lengths in the title compound, which are observed to be 2.022 (4)Å and 2.022 (4)Å respectively, can be compared to the equivalent bond length Cu1-N1 in the (2-pyridylsalicylaldimine) copper(I) tetramer, which is observed to be 1.975 (8) Å, shorter than those observed in the title compound. These differences can be attributed to the lower oxidation state of copper in the (2-pyridylsalicylaldimine) copper(I) tetramer compared to that in the title compound.

Experimental

A suspension of bis(2-pyridylsalicylaldimine)copper(II) (1 mg, 0.0022 mmol) in methanol (*ca*. 3 ml) was heated to *ca*. 323 K until fully dissolved. The solution was then allowed to cool to room temperature. Crystals suitable for single-crystal X-ray crystallography were grown *via* slow evaporation of methanol over seven days.

Figures

Fig. 1. The structure of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

Bis{µ-2-[(pyridin-2-yl)iminomethyl]phenolato}bis[(2- formylphenolato)copper(II)]

Crystal data

Data collection

Rigaku Saturn724+ diffractometer	6782 independent reflections
graphite	6545 reflections with $I > 2\sigma(I)$
Detector resolution: 28.6 pixels mm ⁻¹	$R_{\rm int} = 0.076$
ω scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -11 \rightarrow 10$
$T_{\min} = 0.736, T_{\max} = 1$	$k = -23 \rightarrow 22$
33976 measured reflections	<i>l</i> = −23→24

Refinement

Refinement on F^2 Least-squares matrix: full sites $R[F^2 > 2\sigma(F^2)] = 0.057$ $w = 1/[\sigma^2(F_0^2) + (0.0194P)^2 + 4.0051P]$ $wR(F^2) = 0.106$

F(000) = 1560 $D_{\rm x} = 1.527 \ {\rm Mg \ m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9105 reflections $\theta = 2.1 - 30.4^{\circ}$ $\mu = 1.34 \text{ mm}^{-1}$ T = 150 KPrism, yellow $0.20\times0.12\times0.06~mm$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring H-atom parameters constrained

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.20	$(\Delta/\sigma)_{\rm max} = 0.001$
6782 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
452 parameters	$\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 2964 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.353 (17)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.18124 (6)	0.99821 (3)	0.80722 (3)	0.02880 (13)
Cu2	0.34241 (6)	0.77028 (3)	0.70000 (3)	0.02792 (13)
O2	0.0380 (4)	0.99272 (19)	0.73492 (16)	0.0324 (8)
N3	0.1713 (5)	0.80580 (19)	0.75822 (18)	0.0234 (8)
N1	0.3472 (5)	0.9601 (2)	0.74793 (18)	0.0254 (8)
O4	0.2110 (4)	0.74573 (18)	0.62687 (16)	0.0323 (8)
O6	0.5021 (4)	0.7284 (2)	0.63978 (16)	0.0347 (8)
C31	0.8313 (6)	0.6798 (3)	0.7383 (3)	0.0348 (11)
H31	0.8822	0.6595	0.7019	0.042*
01	0.3198 (4)	1.02568 (18)	0.87665 (17)	0.0375 (9)
03	0.0291 (4)	1.0429 (2)	0.86985 (17)	0.0354 (8)
C1	0.4496 (5)	0.9962 (3)	0.8891 (2)	0.0322 (11)
O5	0.4773 (4)	0.77314 (19)	0.77578 (15)	0.0312 (7)
C17	0.2743 (6)	0.9990 (3)	0.5662 (2)	0.0391 (12)
H17	0.2379	1.0355	0.539	0.047*
C25	0.0007 (5)	0.8201 (3)	0.6601 (2)	0.0258 (10)
C15	0.3331 (6)	0.9506 (2)	0.6754 (2)	0.0270 (10)
C20	0.0858 (5)	0.7781 (3)	0.6120 (2)	0.0272 (10)
C30	0.8958 (6)	0.6803 (3)	0.8016 (3)	0.0407 (12)
H30	0.9898	0.6608	0.8083	0.049*
C21	0.0235 (6)	0.7718 (3)	0.5450 (2)	0.0348 (11)
H21	0.0741	0.7453	0.5124	0.042*
C13	-0.1640 (6)	1.0600 (2)	0.7855 (2)	0.0300 (10)
C3	0.6615 (7)	0.9818 (3)	0.9673 (3)	0.0501 (15)
H3	0.708	0.9937	1.0081	0.06*

C33	0.6283 (6)	0.7067 (3)	0.6591 (3)	0.0343 (12)
H33	0.6893	0.6868	0.626	0.041*
C27	0.6080 (5)	0.7423 (3)	0.7829 (3)	0.0309 (11)
C28	0.6772 (6)	0.7409 (3)	0.8474 (2)	0.0366 (11)
H28	0.6281	0.7604	0.8847	0.044*
C18	0.3240 (6)	0.9365 (3)	0.5366 (2)	0.0391 (12)
H18	0.3243	0.9307	0.4895	0.047*
C6	0.5217 (5)	0.9478 (3)	0.8436 (2)	0.0287 (11)
C7	0.4716 (6)	0.9365 (3)	0.7743 (2)	0.0302 (11)
H7	0.5333	0.9101	0.746	0.036*
C2	0.5278 (6)	1.0136 (3)	0.9505 (3)	0.0443 (14)
H2	0.4875	1.0472	0.9799	0.053*
C26	0.0461 (5)	0.8277 (2)	0.7302 (2)	0.0247 (10)
H26	-0.0205	0.8507	0.7589	0.03*
C16	0.2791 (5)	1.0069 (3)	0.6366 (2)	0.0318 (11)
H16	0.2473	1.0487	0.6573	0.038*
C5	0.6610(6)	0.9168 (3)	0.8619 (3)	0.0353 (11)
Н5	0.7075	0.8858	0.8317	0.042*
C32	0.6868 (6)	0.7099 (2)	0.7272 (2)	0.0276 (10)
C14	-0.0977 (6)	1.0650 (3)	0.8514 (3)	0.0355 (12)
H14	-0.1545	1.0871	0.8849	0.043*
N4	0.1434 (4)	0.8785 (2)	0.85692 (18)	0.0282 (9)
C23	-0.1931 (6)	0.8431 (3)	0.5754 (2)	0.0316 (11)
H23	-0.2834	0.8638	0.5633	0.038*
N2	0.3766 (4)	0.8885 (2)	0.64818 (19)	0.0294 (9)
C24	-0.1378(5)	0.8501 (2)	0.6410 (2)	0.0267 (10)
H24	-0 1929	0 8749	0.6733	0.032*
C38	0 1394 (6)	0.8842(3)	0.9252(2)	0.032
H38	0.1143	0.9279	0.9441	0.042*
C29	0.8168 (6)	0.7110 (3)	0.8563 (3)	0.0374 (12)
H29	0.8595	0.7112	0.8995	0.045*
C9	-0.1666(6)	1 0256 (2)	0.6661 (2)	0.0330(11)
H9	-0.1206	1 0052	0.6283	0.04*
C10	-0.3053(6)	1.0558 (3)	0.6585 (3)	0.0423(13)
H10	-0.3515	1 0543	0.6161	0.051*
C34	0.1807 (5)	0.8147(2)	0.8304(2)	0.0261 (10)
C22	-0.1100(6)	0.8047(2)	0.5273(3)	0.0201(10) 0.0379(13)
622 H22	-0.1452	0.8	0.4829	0.045*
C19	0.1752 0.3730(5)	0.8830 (3)	0.5794(2)	0.0322(11)
H19	0.4054	0.8408	0.5597	0.039*
C36	0.4054	0.7636 (3)	0.9410 (3)	0.039
H36	0.2403	0.7050 (5)	0.9691	0.055*
C35	0.229 (6)	0.7568 (3)	0.9091 0.8709(2)	0.033
H35	0.2229 (0)	0.7148	0.851	0.0340 (12)
C8	-0.0916(5)	1 0247 (2)	0.031 0.7303 (2)	0.0769(10)
C4	0.0210 (3)	0.0277(2)	0.7505(2)	0.0207(10)
с т НИ	0.7200 (0)	0.9319 (3)	0.9240 (3)	0.0433(14)
C11	-0 3798 (6)	1 0892 (3)	0.7500	0.032° 0.0407 (14)
H11	-0.474	1 1080	0.7140 (3)	0.0407 (14)
1111	0.7/7	1.1007	0.7007	0.077

C12	-0.3068 (6)	1.0911 (2)	0.7758 (3)	0.0378 (13)
H12	-0.3525	1.1136	0.8124	0.045*
C37	0.1707 (7)	0.8285 (3)	0.9690 (2)	0.0434 (13)
H37	0.1621	0.8341	1.016	0.052*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0285 (3)	0.0316 (3)	0.0263 (3)	0.0020 (3)	0.0013 (3)	-0.0047 (3)
Cu2	0.0274 (3)	0.0311 (3)	0.0253 (3)	0.0031 (2)	0.0006 (3)	-0.0039 (2)
02	0.0307 (18)	0.0324 (19)	0.0341 (18)	0.0088 (16)	-0.0011 (14)	-0.0055 (16)
N3	0.023 (2)	0.0243 (19)	0.0230 (18)	-0.0007 (17)	0.0021 (18)	-0.0017 (15)
N1	0.028 (2)	0.026 (2)	0.0216 (18)	-0.0002 (18)	0.0025 (18)	0.0029 (15)
O4	0.0283 (18)	0.038 (2)	0.0305 (18)	0.0045 (15)	-0.0007 (14)	-0.0087 (15)
O6	0.0349 (19)	0.039 (2)	0.0298 (18)	0.0015 (17)	0.0035 (15)	-0.0071 (17)
C31	0.028 (3)	0.028 (3)	0.049 (3)	0.005 (2)	0.006 (3)	0.006 (2)
01	0.034 (2)	0.044 (2)	0.0344 (19)	0.0005 (17)	0.0016 (17)	-0.0126 (15)
O3	0.034 (2)	0.041 (2)	0.0313 (19)	0.0075 (17)	0.0045 (16)	-0.0032 (16)
C1	0.034 (3)	0.038 (3)	0.024 (2)	-0.003 (2)	0.0014 (19)	-0.003 (2)
05	0.0316 (17)	0.0340 (19)	0.0280 (17)	0.0060 (16)	-0.0017 (14)	-0.0036 (15)
C17	0.040 (3)	0.042 (3)	0.035 (3)	-0.001 (3)	0.000 (2)	0.012 (3)
C25	0.025 (2)	0.028 (3)	0.025 (2)	-0.0067 (19)	0.0025 (19)	-0.0025 (19)
C15	0.024 (2)	0.033 (2)	0.025 (2)	-0.002 (2)	0.003 (2)	-0.0017 (18)
C20	0.034 (3)	0.024 (2)	0.024 (2)	0.001 (2)	0.006 (2)	0.001 (2)
C30	0.034 (3)	0.028 (3)	0.060 (3)	0.005 (2)	-0.001 (3)	0.010 (3)
C21	0.036 (3)	0.043 (3)	0.025 (2)	0.000 (2)	-0.003 (2)	-0.007 (2)
C13	0.026 (2)	0.025 (2)	0.039 (3)	-0.001 (2)	0.002 (2)	0.0011 (19)
C3	0.045 (3)	0.073 (4)	0.032 (3)	-0.009 (3)	-0.005 (3)	0.001 (3)
C33	0.031 (3)	0.032 (3)	0.040 (3)	0.002 (2)	0.008 (2)	-0.005 (2)
C27	0.033 (3)	0.022 (2)	0.037 (3)	-0.0062 (19)	0.004 (2)	0.004 (2)
C28	0.036 (3)	0.038 (3)	0.036 (3)	0.001 (3)	-0.003 (2)	0.001 (2)
C18	0.042 (3)	0.051 (3)	0.024 (2)	0.006 (3)	0.003 (3)	-0.002 (2)
C6	0.029 (3)	0.028 (3)	0.029 (2)	-0.005 (2)	0.001 (2)	0.002 (2)
C7	0.030 (3)	0.023 (2)	0.037 (3)	-0.002 (2)	0.005 (2)	0.001 (2)
C2	0.048 (3)	0.055 (4)	0.030 (3)	-0.004 (3)	-0.001 (2)	-0.010 (3)
C26	0.025 (2)	0.023 (2)	0.026 (2)	-0.0013 (19)	0.0034 (19)	-0.0048 (19)
C16	0.034 (3)	0.027 (3)	0.035 (2)	0.000 (2)	0.006 (2)	0.001 (2)
C5	0.031 (3)	0.037 (3)	0.037 (3)	-0.002 (2)	-0.001 (3)	0.007 (2)
C32	0.029 (2)	0.021 (2)	0.033 (2)	-0.0026 (19)	0.006 (2)	0.0026 (18)
C14	0.038 (3)	0.031 (3)	0.037 (3)	0.000 (2)	0.014 (2)	-0.002 (2)
N4	0.030 (2)	0.031 (2)	0.0240 (18)	-0.0013 (17)	0.0035 (17)	0.0006 (16)
C23	0.029 (3)	0.031 (3)	0.035 (3)	-0.002 (2)	-0.003 (2)	-0.002 (2)
N2	0.027 (2)	0.035 (2)	0.027 (2)	0.0006 (17)	0.0028 (16)	-0.0009 (18)
C24	0.028 (3)	0.024 (2)	0.028 (2)	-0.0013 (19)	0.005 (2)	-0.0018 (19)
C38	0.036 (3)	0.041 (3)	0.027 (2)	-0.004 (2)	-0.006 (2)	-0.005 (2)
C29	0.037 (3)	0.034 (3)	0.040 (3)	-0.004 (2)	-0.009 (3)	0.012 (2)
C9	0.033 (3)	0.029 (2)	0.037 (3)	-0.002 (2)	0.001 (2)	-0.0013 (19)
C10	0.040 (3)	0.031 (3)	0.056 (3)	-0.002 (2)	-0.014 (3)	0.007 (2)

C34 0.022 (2) 0.032 (2) 0.024 (2) -0.003 (2) -0.001 (2) 0.026 (2) C32 0.022 (2) 0.024 (2) 0.024 (2) -0.003 (2) -0.001 (2) 0.026 (2)	0017 (18) 0.001 (2)
	0.001 (2)
C22 0.039 (3) 0.046 (3) 0.028 (3) -0.011 (2) -0.006 (2)	
C19 0.033 (3) 0.036 (3) 0.028 (2) 0.002 (2) 0.003 (2) -(0.003 (2)
C36 0.059 (4) 0.050 (4) 0.029 (3) 0.000 (3) -0.010 (3) 0.0	013 (3)
C35 0.038 (3) 0.034 (3) 0.029 (2) 0.005 (2) 0.000 (2) 0.0	002 (2)
C8 0.026 (2) 0.022 (2) 0.032 (3) -0.0022 (18) 0.001 (2) 0.0	0059 (19)
C4 0.034 (3) 0.063 (4) 0.034 (3) -0.004 (3) -0.009 (2) 0.0	008 (3)
C11 0.033 (3) 0.027 (3) 0.062 (4) 0.004 (2) -0.004 (3) 0.0	004 (3)
C12 0.034 (3) 0.021 (2) 0.059 (3) 0.002 (2) 0.010 (3) 0.0	002 (2)
C37 0.055 (4) 0.049 (3) 0.026 (2) -0.001 (3) -0.002 (3) 0.9	000 (2)

Geometric parameters (Å, °)

Cu1—O1	1.916 (4)	С33—Н33	0.93
Cu1—O2	1.917 (3)	C27—C28	1.410 (7)
Cu1—O3	2.022 (3)	C27—C32	1.437 (6)
Cu1—N1	2.022 (4)	C28—C29	1.386 (7)
Cu2—O4	1.914 (3)	C28—H28	0.93
Cu2—O5	1.918 (3)	C18—C19	1.384 (7)
Cu2—O6	2.019 (3)	C18—H18	0.93
Cu2—N3	2.028 (4)	C6—C5	1.427 (7)
O2—C8	1.315 (6)	C6—C7	1.447 (6)
N3—C26	1.318 (6)	С7—Н7	0.93
N3—C34	1.429 (5)	C2—H2	0.93
N1—C7	1.309 (6)	С26—Н26	0.93
N1-C15	1.439 (5)	C16—H16	0.93
O4—C20	1.312 (6)	C5—C4	1.390 (7)
O6—C33	1.262 (6)	С5—Н5	0.93
C31—C30	1.369 (7)	C14—H14	0.93
C31—C32	1.433 (7)	N4—C38	1.345 (6)
C31—H31	0.93	N4—C34	1.352 (6)
01—C1	1.315 (6)	C23—C24	1.386 (6)
O3—C14	1.265 (6)	C23—C22	1.410 (7)
C1—C6	1.432 (7)	С23—Н23	0.93
C1—C2	1.432 (7)	N2—C19	1.354 (6)
O5—C27	1.318 (6)	C24—H24	0.93
C17—C18	1.388 (8)	C38—C37	1.386 (7)
C17—C16	1.390 (6)	С38—Н38	0.93
С17—Н17	0.93	С29—Н29	0.93
C25—C24	1.417 (7)	C9—C10	1.378 (7)
C25—C26	1.441 (6)	C9—C8	1.429 (6)
C25—C20	1.448 (6)	С9—Н9	0.93
C15—N2	1.345 (6)	C10—C11	1.423 (8)
C15—C16	1.394 (7)	C10—H10	0.93
C20—C21	1.434 (6)	C34—C35	1.402 (6)
C30—C29	1.412 (8)	C22—H22	0.93
С30—Н30	0.93	С19—Н19	0.93
C21—C22	1.390 (7)	C36—C35	1.383 (7)
C21—H21	0.93	C36—C37	1.401 (8)

C13—C12	1.424 (7)	С36—Н36	0.93
C13—C14	1.426 (7)	С35—Н35	0.93
C13—C8	1.427 (6)	С4—Н4	0.93
C3—C2	1.382 (8)	C11—C12	1.379 (7)
C3—C4	1.403 (8)	C11—H11	0.93
С3—Н3	0.93	C12—H12	0.93
C33—C32	1.437 (6)	С37—Н37	0.93
O1—Cu1—O2	167.40 (15)	N1—C7—H7	117
O1—Cu1—O3	83.95 (14)	С6—С7—Н7	117
O2—Cu1—O3	91.05 (14)	C3—C2—C1	121.8 (5)
O1—Cu1—N1	91.50 (16)	С3—С2—Н2	119.1
O2—Cu1—N1	92.86 (14)	C1—C2—H2	119.1
O3—Cu1—N1	174.69 (16)	N3—C26—C25	127.5 (4)
O4—Cu2—O5	167.61 (15)	N3—C26—H26	116.3
O4—Cu2—O6	84.55 (13)	С25—С26—Н26	116.3
O5—Cu2—O6	90.89 (14)	C17—C16—C15	118.1 (5)
O4—Cu2—N3	91.98 (15)	С17—С16—Н16	120.9
O5—Cu2—N3	91.89 (14)	С15—С16—Н16	120.9
O6—Cu2—N3	175.40 (15)	C4—C5—C6	121.3 (5)
C8—O2—Cu1	128.3 (3)	С4—С5—Н5	119.3
C26—N3—C34	115.3 (4)	С6—С5—Н5	119.3
C26—N3—Cu2	121.0 (3)	C31—C32—C33	117.2 (4)
C34—N3—Cu2	123.5 (3)	C31—C32—C27	119.9 (4)
C7—N1—C15	115.0 (4)	C33—C32—C27	122.9 (5)
C7—N1—Cu1	121.5 (3)	O3—C14—C13	127.8 (5)
C15—N1—Cu1	123.2 (3)	O3—C14—H14	116.1
C20—O4—Cu2	125.6 (3)	C13—C14—H14	116.1
C33—O6—Cu2	126.0 (3)	C38—N4—C34	117.4 (4)
C30—C31—C32	121.2 (5)	C24—C23—C22	118.8 (5)
C30—C31—H31	119.4	C24—C23—H23	120.6
С32—С31—Н31	119.4	С22—С23—Н23	120.6
C1—O1—Cu1	126.4 (3)	C15—N2—C19	117.1 (4)
C14—O3—Cu1	124.9 (3)	C23—C24—C25	121.5 (4)
O1—C1—C6	123.7 (4)	C23—C24—H24	119.3
O1—C1—C2	119.6 (5)	C25—C24—H24	119.3
C6—C1—C2	116.7 (5)	N4—C38—C37	123.4 (5)
C27—O5—Cu2	129.2 (3)	N4—C38—H38	118.3
C18—C17—C16	119.8 (5)	С37—С38—Н38	118.3
С18—С17—Н17	120.1	C28—C29—C30	121.7 (5)
С16—С17—Н17	120.1	С28—С29—Н29	119.2
C24—C25—C26	117.4 (4)	С30—С29—Н29	119.2
C24—C25—C20	120.6 (4)	C10—C9—C8	121.6 (5)
C26—C25—C20	121.7 (4)	С10—С9—Н9	119.2
N2	123.2 (4)	С8—С9—Н9	119.2
N2	118.4 (4)	C9—C10—C11	121.8 (5)
C16—C15—N1	118.4 (4)	С9—С10—Н10	119.1
O4—C20—C21	119.9 (4)	C11—C10—H10	119.1
O4—C20—C25	124.2 (4)	N4—C34—C35	122.8 (4)
C21—C20—C25	115.8 (4)	N4—C34—N3	118.1 (4)

C31—C30—C29	118.6 (5)	C35—C34—N3	119.0 (4)
С31—С30—Н30	120.7	C21—C22—C23	121.2 (5)
С29—С30—Н30	120.7	C21—C22—H22	119.4
C22—C21—C20	122.0 (5)	С23—С22—Н22	119.4
C22—C21—H21	119	N2-C19-C18	123.8 (5)
C20-C21-H21	119	N2—C19—H19	118.1
C12—C13—C14	118.1 (5)	С18—С19—Н19	118.1
C12—C13—C8	120.0 (5)	C35—C36—C37	119.0 (5)
C14—C13—C8	121.9 (5)	С35—С36—Н36	120.5
C2—C3—C4	121.4 (5)	С37—С36—Н36	120.5
С2—С3—Н3	119.3	C36—C35—C34	118.5 (5)
С4—С3—Н3	119.3	С36—С35—Н35	120.7
O6—C33—C32	126.5 (5)	С34—С35—Н35	120.7
O6—C33—H33	116.8	O2—C8—C13	124.4 (4)
С32—С33—Н33	116.8	O2—C8—C9	118.9 (4)
O5—C27—C28	119.7 (4)	C13—C8—C9	116.7 (4)
O5—C27—C32	123.1 (4)	C5—C4—C3	118.7 (5)
C28—C27—C32	117.2 (5)	С5—С4—Н4	120.7
C29—C28—C27	121.4 (5)	С3—С4—Н4	120.7
C29—C28—H28	119.3	C12—C11—C10	117.4 (5)
C27—C28—H28	119.3	C12-C11-H11	121.3
C19—C18—C17	117.9 (4)	C10-C11-H11	121.3
C19—C18—H18	121	C11—C12—C13	122.4 (5)
C17—C18—H18	121	C11—C12—H12	118.8
C5—C6—C1	120.0 (4)	C13—C12—H12	118.8
C5—C6—C7	116.7 (5)	C38—C37—C36	118.5 (5)
C1—C6—C7	122.6 (5)	С38—С37—Н37	120.7
N1—C7—C6	125.9 (5)	С36—С37—Н37	120.7

Fig. 1